Identifying gene-gene interactions using penalized tensor regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized logistic regression for detecting gene interactions.

We propose using a variant of logistic regression (LR) with (L)_(2)-regularization to fit gene-gene and gene-environment interaction models. Studies have shown that many common diseases are influenced by interaction of certain genes. LR models with quadratic penalization not only correctly characterizes the influential genes along with their interaction structures but also yields additional ben...

متن کامل

Analysis of gene-gene interactions using gene-trait similarity regression.

OBJECTIVE Gene-gene interactions (G×G) are important to study because of their extensiveness in biological systems and their potential in explaining missing heritability of complex traits. In this work, we propose a new similarity-based test to assess G×G at the gene level, which permits the study of epistasis at biologically functional units with amplified interaction signals. METHODS Under ...

متن کامل

Classification of gene microarrays by penalized logistic regression.

Classification of patient samples is an important aspect of cancer diagnosis and treatment. The support vector machine (SVM) has been successfully applied to microarray cancer diagnosis problems. However, one weakness of the SVM is that given a tumor sample, it only predicts a cancer class label but does not provide any estimate of the underlying probability. We propose penalized logistic regre...

متن کامل

Gene set selection via LASSO penalized regression (SLPR)

Gene set testing is an important bioinformatics technique that addresses the challenges of power, interpretation and replication. To better support the analysis of large and highly overlapping gene set collections, researchers have recently developed a number of multiset methods that jointly evaluate all gene sets in a collection to identify a parsimonious group of functionally independent sets...

متن کامل

A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression.

Gene-environment (G × E) interactions are biologically important for a wide range of environmental exposures and clinical outcomes. Because of the large number of potential interactions in genomewide association data, the standard approach fits one model per G × E interaction with multiple hypothesis correction (MHC) used to control the type I error rate. Although sometimes effective, using one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2017

ISSN: 0277-6715

DOI: 10.1002/sim.7523